
STEALING CHROMIUM: EMBEDDING HTML5
WITH THE SERVO BROWSER ENGINE
Lars Bergstrom

Mozilla Research
Mike Blumenkrantz

Samsung R&D America

Why a new web engine?
• Support new types of applications and new
devices

• All modern browser engines (Safari, Firefox,
Chrome) originally designed pre-2000

• Coarse parallelism

• Tightly coupled components

• Vast majority of security issues are related to the
C++ memory model

Servo
• Written in a memory-safe
systems language, Rust

• Architected for
parallelism

• Coarse (per-tab), as in
Chrome

• Lightweight (intra-page),
too

• Designed for embedding

Rust - safe systems programming
• C++ syntax and idioms

• C++-like performance

• Memory safety

• Concurrency

• Parallelism

http://www.rust-lang.org

http://www.rust-lang.org

Familiar syntax and performance

Memory safety without overhead
• Lifetimes and ownership ensure memory safety

• No garbage collection

• No reference counting

• No C++ “smart” pointer classes

Example of code you can’t write

How a browser works
HTML	

CSS	

JS

DOM Flow
Tree

Display
Lists

Script

Layout Render

Parsing

More details: http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Script &
Interactions

http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

How a browser works
HTML	

CSS	

JS

DOM Flow
Tree

Display
Lists

Script

Layout Render

Parsing

This works:
<html>	
	 <script>	
	 document.write	 (“</script>	
	 foo	
</html>	

More details: http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Script &
Interactions

http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Timing breakdown

Data from A Case for Parallelizing Web Pages. Mai, Tang, et. al. HOTPAR ‘12

Task Percentage
Runtime libraries 25%
Layout 22%
Windowing 17%
Script 16%
Painting to screen 10%
CSS styling 4%
Other 6%

Websites already partitioned

Servo’s architecture

Constellation

Renderer

LayoutScript

Pipeline 1 (iframe 1)

Tab 1

Servo’s architecture

Constellation

Renderer

LayoutScript

Pipeline 1 (iframe 1)

Renderer

LayoutScript

Pipeline 2 (iframe 2)

Tab 1

Servo’s architecture

Constellation

Renderer

LayoutScript

Pipeline 1 (iframe 1)

Renderer

LayoutScript

Pipeline 2 (iframe 2)

Tab 1

Renderer

LayoutScript

Pipeline 3 (iframe 3)

Demo: parallelism and sandboxing

Parallel layout
• Matters hugely on mobile platforms

• Processors run at lower frequencies, but many
cores

• Would enable more complicated pages on all
platforms

• Implemented by work-stealing algorithm

See: Fast and Parallel Webpage Layout. Meyerovich and Bodik. WWW 2010.

Parallel layout

body

div div div

text bold text text

Parallel layout

body

div div div

text bold text text

div
div
div

Queue

Parallel layout challenges
• HTML layout has complex dependencies

• Inline element positioning

• Floating elements

• Vertical text

• Pagination

• Considering adding speculation

Layout: parallel speedups
Ti

m
e

(m
s)

0

175

350

525

700

Number of Threads

1 2 3 4 5 6 7 8

High CPU Frequency Low CPU Frequency

Total time with parallel layout
Ti

m
e

(s)

0

0.9

1.8

2.7

3.6

Number of Threads

1 2 3 4 5 6 7 8

High CPU Frequency Low CPU Frequency

Total power with parallel layout
Po

w
er

 (J
)

0

30

60

90

120

Number of Threads

1 2 3 4 5 6 7 8

High CPU Frequency Low CPU Frequency

Measurements by Laleh Beni, intern from University of California Irvine

Punchline: parallelism for power, too

• Force low-frequency CPU setting

• Above four cores, same end-to-end performance
as single core at high-frequency

• BUT, 40% of the power usage

• Could also parallelize more

• Rendering, CSS selector matching, etc.

From engine to browser
• Servo just renders pages

• Similar to the Blink and Gecko engines

• Designed to work in many browser shells

• Firefox OS, over interprocess communication
(IPC)

• Android, by implementing a Java wrapper

• On the desktop with…

What is embedding?
• Hosting web engine in native application

Why embed?
• Reduced development
time

• HTML5 popularity

How not to embed
• WebKit

• Blink

• Both suffer from an unstable API

• Application developer choices:

• Ship full browser engine with application

• Continually update to match breakages

How to embed?
• CEF: Chromium Embedded Framework

• Isolates application developers from core API

• C API with C++ extensions

Servo embedding strategy
• Stable API/ABI

• Extensive API testing is a plus

• C-based

• Flexible

• Already designed

How to embed with Servo?
• Use CEF API+ABI

• Removes need for YA embedding API

• Less competition, more coding

• Allows easy testing between engines

• Servo: the pragmatic embedding engine

Servo embedding methodology
• Full symbol/ABI coverage

• Every CEF function call resolves to a Servo function

• Struct allocation sizes are identical

typedef struct _cef_string_utf8_t {
 char* str;
 size_t length;
 void (*dtor)(char* str);
} cef_string_utf8_t;
!
!
!
!
!

C

pub struct cef_string_utf8 {
 pub str: *mut u8,
 pub length: size_t,
 pub dtor: extern “C” fn(str: *mut u8),
}
!
!
!
!
!

Rust

Servo embedding development
• Start with base set of symbols

• `nm -u` on CEF applications

• Track function execution

• CEF <-> Blink <-> Application <-> CEF …

• Mimic CEF behavior using Servo equivalents

• Use preload hacks to test

• LD_PRELOAD on Linux

Servo status
• Pass some tests

• ACID1, ACID2

• Render basic web pages

• Wikipedia, etc.

• Focus on design +
challenges

• Parallelism, latency,
power, memory

Servo roadmap
• https://github.com/servo/servo/wiki/Roadmap

• Q3 2014

• Writing modes (vertical text)

• DOM memory usage, perf, and features

• Web Platform Tests & CSS Ref Tests

• Q4 2014

• Very basic dogfooding

https://github.com/servo/servo/wiki/Roadmap

Getting involved with Servo
• www.github.com/servo/
servo/issues

• Filter for “E-Easy”

• irc.mozilla.org, #servo
channel

• Worldwide community

• Looking for more
partners and contributors

• larsberg@mozilla.com

http://irc.mozilla.org
mailto:larsberg@mozilla.com

