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Why a new web engine?
• Support new types of applications and new 
devices 

• All modern browser engines (Safari, Firefox, 
Chrome) originally designed pre-2000 

• Coarse parallelism 

• Tightly coupled components 

• Vast majority of security issues are related to the  
C++ memory model



Servo
• Written in a memory-safe 
systems language, Rust  

• Architected for 
parallelism 

• Coarse (per-tab), as in 
Chrome 

• Lightweight (intra-page), 
too 

• Designed for embedding



Rust - safe systems programming
• C++ syntax and idioms 

• C++-like performance 

• Memory safety 

• Concurrency 

• Parallelism

http://www.rust-lang.org

http://www.rust-lang.org


Familiar syntax and performance



Memory safety without overhead
• Lifetimes and ownership ensure memory safety 

• No garbage collection 

• No reference counting 

• No C++ “smart” pointer classes



Example of code you can’t write
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More details: http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Script & 
Interactions

http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/


How a browser works
HTML	
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This works: 
<html>	  
	  <script>	  
	  document.write	  (“</script>	  
	  <li>foo</li>	  
</html>	  

More details: http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Script & 
Interactions

http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/


Timing breakdown

Data from A Case for Parallelizing Web Pages. Mai, Tang, et. al. HOTPAR ‘12

Task Percentage
Runtime libraries 25%
Layout 22%
Windowing 17%
Script 16%
Painting to screen 10%
CSS styling 4%
Other 6%





Websites already partitioned
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Demo: parallelism and sandboxing



Parallel layout
• Matters hugely on mobile platforms 

• Processors run at lower frequencies, but many 
cores 

• Would enable more complicated pages on all 
platforms 

• Implemented by work-stealing algorithm

See: Fast and Parallel Webpage Layout. Meyerovich and Bodik. WWW 2010.
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Parallel layout challenges
• HTML layout has complex dependencies 

• Inline element positioning 

• Floating elements 

• Vertical text 

• Pagination 

• Considering adding speculation



Layout: parallel speedups
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Total time with parallel layout
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Total power with parallel layout
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Measurements by Laleh Beni, intern from University of California Irvine



Punchline: parallelism for power, too

• Force low-frequency CPU setting 

• Above four cores, same end-to-end performance 
as single core at high-frequency 

• BUT, 40% of the power usage 

• Could also parallelize more 

• Rendering, CSS selector matching, etc.



From engine to browser
• Servo just renders pages 

• Similar to the Blink and Gecko engines 

• Designed to work in many browser shells 

• Firefox OS, over interprocess communication 
(IPC) 

• Android, by implementing a Java wrapper 

• On the desktop with…



What is embedding?
• Hosting web engine in native application



Why embed?
• Reduced development 
time 

• HTML5 popularity



How not to embed
• WebKit 

• Blink 

• Both suffer from an unstable API 

• Application developer choices: 

• Ship full browser engine with application 

• Continually update to match breakages



How to embed?
• CEF: Chromium Embedded Framework 

• Isolates application developers from core API 

• C API with C++ extensions



Servo embedding strategy
• Stable API/ABI 

• Extensive API testing is a plus 

• C-based 

• Flexible 

• Already designed



How to embed with Servo?
• Use CEF API+ABI 

• Removes need for YA embedding API 

• Less competition, more coding 

• Allows easy testing between engines 

• Servo: the pragmatic embedding engine



Servo embedding methodology
• Full symbol/ABI coverage 

• Every CEF function call resolves to a Servo function 

• Struct allocation sizes are identical

typedef struct _cef_string_utf8_t { 
 char* str; 
 size_t length; 
 void (*dtor)(char* str); 
} cef_string_utf8_t; 
!
!
!
!
!

C

pub struct cef_string_utf8 { 
 pub str: *mut u8, 
 pub length: size_t, 
 pub dtor: extern “C” fn(str: *mut u8), 
} 
!
!
!
!
!

Rust



Servo embedding development
• Start with base set of symbols 

• `nm -u` on CEF applications 

• Track function execution 

• CEF <-> Blink <-> Application <-> CEF … 

• Mimic CEF behavior using Servo equivalents 

• Use preload hacks to test 

• LD_PRELOAD on Linux



Servo status
• Pass some tests 

• ACID1, ACID2 

• Render basic web pages 

• Wikipedia, etc. 

• Focus on design + 
challenges 

• Parallelism, latency, 
power, memory



Servo roadmap
•  https://github.com/servo/servo/wiki/Roadmap 

• Q3 2014 

• Writing modes (vertical text) 

• DOM memory usage, perf, and features 

• Web Platform Tests & CSS Ref Tests 

• Q4 2014 

• Very basic dogfooding

https://github.com/servo/servo/wiki/Roadmap


Getting involved with Servo
• www.github.com/servo/
servo/issues 

• Filter for “E-Easy” 

• irc.mozilla.org, #servo 
channel 

• Worldwide community 

• Looking for more 
partners and contributors 

• larsberg@mozilla.com

http://irc.mozilla.org
mailto:larsberg@mozilla.com

